INSTITUCIÓN EDUCATIVA SAN JÓSE DE ORITO
ÁREA DE MATEMÁTICAS
GRADO NOVENO
EN ESTE BLOG APRENDEREMOS LA DEFINICIÓN, EJEMPLOS Y GRÁFICAS DE LA FUNCIÓN LINEAL
FUNCIÓN
En análisis matemático, el concepto general de función se refiere a una regla que asigna a cada elemento de un primer conjunto un único elemento de un segundo conjunto (correspondencia matemática). Por ejemplo, cada número entero posee un único cuadrado, que resulta ser un número natural (incluyendo el cero):
−2 → +4,
−1 → +1,
0 → 0,
+1 → +1,
+2 → +4,
+3 → +9,
CLASIFICACIÓN DE FUNCIONES
Existen varias clases de funciones reales, entre ellas encontramos la función lineal o afín.
FUNCIÓN LINEAL O AFÍN
Una función lineal o afín es una
función que tiene como dominio y rango a los números reales. La función lineal
se representa por la expresión Y = mx + b ó y =
mx+ b llamada ecuación canónica, donde m es
la pendiente de la recta y b es el intercepto con el eje Y.
La grafica de una función lineal es una línea recta en el plano, puede
ser creciente, decreciente o constante, esto depende del valor de la pendiente.
Por ejemplo:
Si m es mayor que cero la recta es creciente.
Si m es menor que cero la recta es decreciente
Si m es igual a cero la recta es paralela al eje x y es una función
constante.
A continuación se observa las gráficas
de las funciones lineales, según la pendiente.
Tenemos la función lineal y
= 3x +2, cuya grafica se observa a continuación.
La función lineal y = 3x + 2, tiene como pendiente m
= 3 e intercepto b = 2, es una función
de la forma y = mx + b)
Nota importante: El número m se
llama pendiente de la recta y es la relación entre la altura y
la base, aquí vemos que por cada unidad recorrida en x la
recta sube 3 unidades en y por lo que la pendiente es m = 3 y b es
el intercepto de la recta con el eje Y (donde la recta se cruza con el eje Y)
Observa el siguiente vídeo, te ayudará a realizar la gráfica de funciones lineales en el plano cartesiano.
Comentarios
Publicar un comentario